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Abstract

A linear slender-body theory is pre-
sented for the zero-speed motions of a
ship in regular free-surface waves,
valid for an arbitrary angle of inci-
dence and all wavelengths of practical
interest. The velocity potential of
the "radiation" problem is obtained by
the superposition of a particular solu-
tion, identical to that of the short-
wavelength strip theory, and a homo-~
geneous component that accounts for the
longitudinal flow interactions., A
similar representation is used for the
"diffraction® problem where the particu-
lar solution is equal and opposite to
the incident wave velocity potential.

Computations are presented for the
vertical hydrodynamic force distribution
and the heave and pitch added-mass and
damping coefficients, exciting forces
and motions for a Series 60 hall, Com=-
parisons are made with strip theory, a
three-dimensional theory and experi-
ments.

1. Introduction

In the past twenty years slender-
body theory techniaues have found broad
applications in ship hydrodynamics.

The geometrical slenderness of the ship
hull, however, is insufficient to jus-
tify an asymptotic theory. The length-
scales introduced by the wavelength and/
or the ship forward speed need also to
be considered.

The wavelengths encountered in an
ambient seaway are comparable to hoth
the transverse and the longitudinal
dimensions of conventional ships, It
is therefore desirable that a theory
for the motions of a ship advancing in
waves would embrace all wavelengths
encountered in practice. Newman (1978)
developed the theoretical framework of
such a slender-body theory where the
ship slenderness 1s sufficient for the
asymptotic analysis involved. The
theoiv, hereafter referred to as "uni-

fied theory", was applied to the radia-
tion problem bv Newman and Sclavounos
(1980) and was extended to the diffrac-
tion problem bv Sclavounos (1981).

In the present paper the radiation
and diffraction prorlems are combined
to predict the zero-speed heave and
pitch motions of a shipr in waves. The
theoretical derivation is presented in
Section 2 including the radiation prob-
lem as derived by Newman (1978) for
purposes of comparison with the diffrac-
tion prohlem, The short-wavelength
approximations of the unified theory
are derived in Section 3 where existing
theories 1or the radiation and diffrac-
tion problems are recovered. An effi-
cient numerical technique for the solu-
tion of two-dimensional free-surface
problems is described in Section 4. A
hybrid integral representation valid in
a domain bounded by the body section,
the free surface and a circular boundary
lying in the fluid domain is matched to
a multipole representation valié¢ outside
the matchina circle, 1In Section 5 numer-
ical computations are presented for the
hydrodynamic force distribution and the
motions for a Series 60 (C_=0,7) hull
and comparisons are made w?th existing
theories and experimental data.

In what follows,a physical descrip-
tion of the method of solution is
attempted., The ship is assumed to be
slender, the fluid motion incompressibhle
and irrotational and the ship motion
amplitude small enough to validate the
linear decomposition of the hydrodynamic
disturbance in the radiation and the
diffraction problems,

For the radiation problem, in an
*inner" region close to the ship hull,
the longitudinal flow gradients are
small compared to the transverse ones,
The field ecuation can therefore be
reduced to the two-dimensional Laplace
equation, supplemented by a two-dimen-
sional bodv boundary condition and the
zero-speed free-surface condition. For
the diffraction problem the slenderness
assumptions are invoked after the
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longitudinal component of the incident
wave is factored out. The two-dimen-
sional modified Helmholtz eqguation turns
out to be the relevant inner-field equa~
tion with a no flux body-boundary condi-
tion and the same free-surface condition
as in the radiation problem.

In an “outer" region, located at
radial distances greater or equal to the
ship length, the flow gradients in all
directions are of comparable magnitude.
The three-dimensional Laplace equation
is satisfied in the fluid domain for
both problems, subject to the zero-
speed free-surface condition and a con-
dition of outgoing waves at infinity.
The method of matched asymptotic expan-~
sions is used to enforce the compatibi-
lity of the inner and outer solutions
in an intermediate "overlap" region.

The velocity potential of the inner
radiation problem involves a particular
solution identical to that of the short-
wavelength strip theory and is supple-
mented by a homogeneous solution that
represents standing waves at “infinity",
The corresponding particular solution
of the diffraction problem is equal and
opposite to the incident wave potential
with the longitudinal wave component
factored out. The homogenecus part
again satisfies standing waves at
*infinity" and is regular for all head-
ings,

The homogeneous solutions of both
the radiation and the diffraction
problems are multiplied by “interaction®
coefficients, functions of the longitu-
dinal coordinate, that are determined
after the matching with the correspond-
ing outer solutions, Two integral
equations are solved, in that context,
for the unknown three~dimensional source
distributions along the ship axis that
describe the outer solutions of both
problems,

In the short-wavelength limit, the
interaction coefficient of the radiation
problem vanishes and the classical strip-
theory solution is recovered ( see
Ogilvie and Tuck{1969)). At the same limit,
the solutions ot Choo (1975) and Troesh
{(1976) for the diffraction problem are
recovered for oblique waves, The sin-
gularity that is present in these
theories for head waves is due to a non-
uniformity that is present when the
short-wavelength approximation preceeds
the transition from oblique to head
incidence, For head waves the Maruo
and Sasaki (1974) theory is recovered,
apart from a minor analytical differ-
ence,

2, The Boundary Value Problem

We introduce a Cartesian coordinate
system fixed in space with the free
surface taken at z=0, the ship center-
plane at y=0 and the positive axis point-
ing towards the bow. The ship is
assumed to perform small oscillatory
wotions around its undisturbed floating
position, all oscillatory quantities are
exggessed in complex form and the factor
el is understood hereafter. Only
the symmetric heave and pitch motions
are considered, since, to the same
degree of accuracy, the longitudinal
interactions are absent from the anti-
symmetric modes for which strip theory
is valid for all wavelenaths. More
details for the analysis that follows
can be found in Mewman (1978) and
Sclavounos (1981),

For water of infinite depth the
incident wave potential is given by

,I = igﬁ exp{vz~iv(xcos8+ysinp)], (2.1)

where A is the wave amplitude, v=w?/g is
the wavenumber and B the angle of inci-
dence, with 8=180° for head incidence.

Let 0 j=3,5,7 he the complex
velocityj;otentials associated with the
unit ampli-ude heave and pitch motions
and the syimetric diffraction problem
respectively., Under the assumptions
stated in the Introduction, the three~
dimensional Laplace egquation is satis-
fied in the fluid domain

Vg =0, (2.2)

subject to the linear free-surface condi-
tion

onz=20, (2.3)

P37V = 0

and the body boundary condition applied
at the mean position of the ship wetced
surface §

" iw nj

o\ = : s
(n ’?j ~(h.v) (39 gvz-ivxcost
[+

—

+3=3,5
' (2.4}
- cos{vysinf)}, j=7
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where h = (n Ny ) is the unit normal
vector pointing“out of the fluid domain
and n, = =xn.+zn,., The well-posedness
of the previgus undary-value problems
requires that the velocity potentials
g. represent outgoing waves in the far

je1d with the fluid velocity vanishing
as z+-w,

In the next two subsections the
ship slenderness is invoked to approxi-
mate the flow eguations in the outer and
inner regions respectively.

2A. Outer Region

At radial distances comparable to or
greater than the ship length, the flow
is insensitive to the ship hull geometry
details and the velocity potential can
be approximated by a line distribution
of three-dimensional sources along the
ship centerline, given by

P

ivox
e Wj(x'er)

PRV
I e ° Qj(g) Gi{x-E,y,2z)at, (2.5)
L

where v_ is the characteristic wavenum-
ber of The longitudinal distribution of
the hull normal velocity (v _=0 for the
heave and pitch motions and Vo = vcosB
for the diffraction problem); qj(x) is
the slowly varying part of the source
strength distribution and G(x-{,y,z) is
the velority potential due to a unit
pulsating source located on the ship
axis at x=f, In order to match the
outer solution (2,5) to the correspond-
ing expression of the inner problem we
need to expand (2.5) for small vr,
where r = (y’+2z%)%, It is convenient
to take the Fourier transform of both
sides of (2.5) to obtain,

*
v, (y,2:k) = g

* *
3 i k) G (y,z3k=v,), (2.6)

]

where

« w .
G (y,z:k) j elkx G(x,y,2)dx

-in

o 241020
I | Jf' e? (U k) "o suy au
i; . (u2+ k“ )E-V

(2.7)

*
For small vr, VoI and kr, G can be
approximated in the form

* *
G (y,z:k-v,) = RelG (y,z;-)o)}

- = va)F (k=v ) (2.8)

with an error factor 1+0(v’r2,v°2r’,k2rﬁ
and

*
F (k)

tn(lv |/ 1k + -y 2 /v?) 7
.cosh-l(lv/ vol) - Il-k’/vzl-k

ni+cosh-1(v/|k|)
. - , (2.9)
-1+ cos ~ (v/ik|)

where the upper or lower term in brack-
ets is applicable according as v/{k|21
and I“g'i v for all cases of interest.

Expression (2.8) is a generalization
of the corresponding approximation
derived by Newman (1978, eq. 4.12)
for the radiation problem. As v _+0,
the combination of the firat two terms
in (2.9) reduces to t2v/|kx]).
Furthermore, G (y,2;0) = R, (y,z) is
the two-dimensional source“Potential
that satisfies the Laplace equation,
subject to the linear free-~surface
condition and a radiation condition
of outgoing waves as viyl+ «. Given
that Im(RzD) = % e %cos(vy) and the

fact that e’?cos(vy) = (1+vz) [240(v’r?)]
in the regime where (2.8) is valid, it
follows that

L]
6" (y,zsK) = Rypiy,w) = g=(Levz) £ (k)

(2.10)

where

£ (k) = tn(2v/]k]} + ni - |1=k'/v?|7%,

[ni+cosh-l(v/|k‘;] (2.11)

-n+cos-l(v/!k|L

which is identical to equation (4.12)
of Newman (1978),
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-vcosB, with G (y,z;-v.) =D

For the digfraction problem,v

D begng
the corresponding two-dimengxonal
source potential that satisfies the
Helmholtz equation (V;D-voz)n2D =0

and the same free-surface and radiation
conditions as Rype It is essential to
point out that Im(DZD)=%cscBevzcosWysinB)

is singular for |cosB|=l and, as opposed
to the radiation problem, it is not present.
Thus, the inner expansion of the outer
solution for the diffraction problem

is given by (2.6) and (2.8)~(2.9) and

is reqular for all headings.

In summary, the inner expansion of
the outer solution transformed back in
the physical x-space takes the form

Rap

WJ (X,y,2) = qJ- {x) Re (D

2!

- Lo £ (ay), (2.12)

where the linear operator 1[ is obtained
by toking the inverse Fourier transform
of (2.6). It follows that

‘z ni

-1 -
1\°(x )

+Id£ e {%sgn(x-C)Ln(Zle-£|)
L

d . nv <
(FE+ivglay (6) - B RIvx=0)lag(0) 3,
(2.13)
where y=0.57... is the Euler constant,
h(8)=cscBeosh™ (|secB|)-Ln(2|sec8]) (2.14)
(2.15)

K(x)=Y_(x)+2i Jo(lxl)+ ﬂo(lxl)

with the upper or lower terms in brack-
ets applying for the radiation (j=3,5
and vo=0) and the diffraction (j=7 and
Vo = ~-vcosR) problems respectively,

2B, Inner Region

At transverse distances of the order
of the ship beam, the relative order of
the flow gradients in the longitudinal
and transverse directions are dictated
by the respective order of the geometry
gradients, Assuming that both the y
and 2z coordinates are of 0(sr), a coor-

dinate stretching suaqests that

3

2 = 0(1), g%,.gg = ot

) (2.16)

when operating on wj defined in (2.5).

Applying (2.16) in (2.2)-(2.4) and
using the definition of y.,we obtain
the two-dimensional modified Helmholtz
equation

V. (2.17)

+ Y. = Py, =
dyy ¥ V322 T VoV T 0 e

subject to the free-surface condition

wjz - ij =0 onz=0, (2.18)
and the body boundary condition
3 - iw N, ' j=3,5]

- %g §§(evzcos(vysins)}, 3=7 I

(2.19)

where to leading order in c,ﬁs(O,N2N3),
with N5= - xN3.

The general solution of (2,17)=(2.19)
can be obtained in the form

V. =¥ (2.20)

. + R §
5= ¥yp * C3x) Yyg e

where is a particular and ¥.. a
homogendBus solution of (2.17)-15.19)
respectively, The "interaction®
coefficient C.(x) is presently an
arbitrary fundtion of x that will be
determined from the matchino with the
outer solution. No radiation condition
needs to be satisfied in the inner
region since the outer solution already
represents outgoing waves at infinity.

Following Newman (1978), a particular
solution of the radiation probhlem
(3=3,5, v_=0) is the short-wavelenath
strip thegry potential ¢ that satisfies
outgoing waves as v]|yl+«. The homo-
geneous solution can ke physically
regarded as the interaction of two inci-
dent symmetric waves with the ship
section. The pure imaginary form of
the body boundary condition suagests
that oj + $j is a homoaeneous solution,

where the overbar stands for the com-
plex conjugate of the quantitv involved.
Thus,

?;' = 'i.i = ‘:_i{’(‘-'(x) (‘t"i* "1)' J=3.-5 (2.21)

e ]
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with ¢.=-x¢3. In the overlap region, at
transvérse Sistances large compared to
the ship beam but still small compared
to its length as €+0, ¢: can be ex-
pressed by their effective source
strengths, in the form

¢ (2.22)

J- = Oj RZD(Y'Z) .
where R,. is the two-dimensional source
potentigg that satisfies outgoing waves
as v|y|+=. We may thus approximate "j
in the overlap region as follows,

?j = wjﬂ:,j {x) (aj“’i)}kzn

1f we now set, Im(R,,) 1(1+uz)(1+0(v2rz)L
the outer expansion Bf the inner solu-
tion becomes

?j = {4:1j«1>cj (x) (aj+5j)}R2D

- i Cj(x)aj(1+vz). (2.24)

Comparing (2.12) to (2.24) the match-
ing conditions for the radiation prob-
lem are,

. - 1
i Cj °j LT GE(qj). (2.26)

After eliminating C3; from (2.25)-(2,26),
the outer source stzength g; is deter-
mined from the integral equltion

qy(x) - = (oj/'o'ju)I(qj)

= oj(x) j=3,5, (2.27)

where z(qj) is given by (2,13) with vo=0.

A particular solution for the dif-
fraction problem follows easily from the
body boundary condition (2.19) and is
equal and opposite to the symmetric
part of the incident wave potential

Yap = = %? eV? cos (vysing). (2.28)

The head sea limit of Yy, is the leading
order solution in the sggrt-wavelenqth
theory of Faltinsen (1971).

The homogeneous solution again re-
sults from the interaction of two waves
of unit amplitude and equal phase in-
cident from opposite directions upon

R Koy S R
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the ship section, and is obtained in
the form

Vou = %? ev? cos(vysin8)+wb(y,z),(2.29)

where yp is constructed by using the
two-dimensional source potential Re(DzD)
that represents standing waves as
v|y|+*~ and is regular for all headings.
Thus,

Yy = - %? eV? cos (vysing) [1-C, (x) ]

+ Cy(x)¥p (y,2). (2.30)

In the overlap region, ¥, can be
approximated in the form

vy = =~ 19 e (x) (Q4va)
+ C,(x)0y(x) Re(Dyp). (2.31)

The matching requirements again
follow easily from (2.12) and (2.31),

C., 07 = q-] (2.32)
i 1
Z-cq) = HZ(q,}. (2.33)

The elimination of C., from (2.32)~-(2,33)
results in the following integral
equation for 99,

iw
qﬂx)-;—;o-, {(q-,)-a.,, (2.34)

vhere l(q.;) is determined by (2.13)
with Vo==VCcosk,

The solution of equations (2.27) and
(2.34) determines the outer source
strencth q., and the complete inner
solutions zollow in the form

q.=0 -
@5 =05+ o TG (65+485)  3=3,5

Oj+0j

(2.35)
for the radiation problem, and
by = %g eV? cos(vysinﬁ)(q7/c7-l)

for the diffraction problem.
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3. Short-Wavelength Approximations

For wavelengths comparable to th
ship transverse dimensions [vL=0(e™") as
£+0], it is possible to approximate the
linear operator (a) defined in (2.13)
using the techniqu~s of asymptotic
analysis. For the diffraction problem
and -1<cosB<0,it follows that

J 1 X I‘( 2 © e-iv(i—x)(kcosS)
{(q,) = 5(1-i) (av*?) )
o 2 xq7 {£ ~ x)j"l

-ni (cscs- 3lsec §])g, (+0v™H. (3.1)

The details of the derivation can be
found in Sciavounos (1981). The corre-
sponding approximation for the radiation
problem follows from (2.13) and (3.1)
with cosf=0, in the form

1 o
Lag)=31-1) () 9y (0 —x— at

x
. V2 -
+ 7l qj(x) + 0(v ). (3.2)

Proceeding with the radiation problem,
the integral in (3.2) can be further
approximated for larye v in the form

L/2 .

=iv (§=x} LI

(qj(e',)ﬁ(f—)g—-das-(";)e"“/‘qj(x). (3.3)
Ly

; .

The substitution of (3.3) in (3.2) can-
cels out the firat two terms, with the
remaining part being of o(v‘%). Thus
for short wavelengths

a (x) = oj(x) + o), (3.4)

and strip theory is recovered.

An approximation similar to (3,3)
applied to (3.1) gives

£(q7) = '“i CSCB q-,(x) + O(V-B)o (3.5’

The approximation (3.5) is singular
for head waves due to a nonuniformity
that is present in the asymptotic
approximation of (3,1) when l+cosf=0,
Substituting (3,5) in (2.34) we obtain
an algebraic equation for q7(x) with a
solution

W
qq = 0,/(1 4 75 0,CscB) . (3.6)

Substituting (2,33) and (2.32) in
(2.30) and using (3.5), we may write
the outer expansion of the inner solu-
tion in the form

i csch q7(x)(l+vz)+q7(x)Re(02D)

= 1
Y, = =
=gq 3.7

7(x) Dap s

where l+vz = e’? cos(vysing) (140 (vZr?)]
in the overlap region. The two-dimen-
sional source potential Djp satifies
outgoing waves as v|y|+» is singular
for head waves and corresponds to the
Green function used in the short-wave-
length strip theory derived by Choo
(1975) and Troesh (1976).

In the head-sea case (8=180°), (3.1)
reduces to(originally due to F.itinsen

(1971)) 172
q,(8)
diay = 3 a-i) J -Z-—),; ac, (3.8)
(E-x
X

and the Maruo and Sasaki (1974) theory
is obtained apart from two analytical
differences; the % factor is missing
in their theory and an additional

i q,(x)/2 term appears in their ecua-
tion‘which corresponds to (3.8) that
should not be present in a consistent
short-wavelength approximation.

4. The Two-Dimensional Problem

In this section a numerical scheme
for the solution of two-dimensional
free-surface wave problems in water of
infinite depth is described.

The application of spectral tech-
niques to the solution of free-surface
boundary-value problems is in general
restricted to simple body profiles.
Urse.l (1949) obtained the solution
of the heaving problem of a circular
section in water of infinite depth by
using a sequence of singularities
local 2d at the origin of the axes.

The extention, however, of this method
to more general body sections has not
been yet formally esta%lished.

An efficient numerical technique
to treat arbitrary body and bhottom
geometries has been developed by Yeung
{Bai and Yeung (1974)]). 1In an inner
region of changina topoaraphy, a hybrid
integral equation is ohtained by applv-
ing Green's theorem and using the funda-
mental logarithmic singularity as the
relevant Green function. This repre-
sentation is then matched to an eigen-
function expansion in an outer region
of constant depth, Liapis and Faltinsen
(1980) extended this method to the case
where the Helmholtz eaquation is satis-
fied in the fluid domain. A compre-
hensive survey of existing techniques
for the solution of two-dimensional
free~surface wave problems is given by
Wehausen (1974).
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% W, (r,8) = K, _,(lr)cos(2m-2)6

; !

: 1 z

; S + KZm(Lr)cosZme

L F

1 0 B} C y
1 j }’ + 2IsecBIKZm_l(Lr)cos(zm-l)e
f 9 * ,' (4.5)
2 S P / where K _(x) is the modified Bessel
E A / functiol of order n defined in Abramowitz
2 B\ n / and Stegun (1964). For =0, W =R,
. Yi) /S with R, defined in Section 2,8nd
3 P 2D
3 s,
k- 1 . _ cos2mb v_ cos(2m-1)6
Pt M (F8) = =t e el 6
E: hl i 1 r r
‘§> Applying Green's theorem in region
L II (ABCDA), using the symmetry of the
4 flow and the free surface condition
2 Figure 1. (4.2), we obtain
o
= 1,11 J’ 11, 2
: + a Y )F
\ The present approach is a coupling Z ALY s(p)¢ (P)(np p) (¢.Q)

of a multipole expansion and a hybrid SgUsy

3 integral representation, valid respec-
i tively in the domains | and II of Figure

1, separated by a matching circle Sp. II +
The water depth is assumed infinite and + J ds(®)¢ (P)an'Vp)-VIF(P,Q)
the body section symmetric with respect

; to the y=0 axis. The Helmholtz equation Sp

2 is in general satisfied in the fluid

E f domain

= 2 - 2% = 0, (4.1) - [ ds(P)F(P,Q) (npovan(p)

H s

- subject to the free-surface condition R

A ¢, = Ve =0 on z=0, (4.2) = J ds(p) F(P.Q) V(P), (4.7)

5 SB

to a general body-boundary condition

where RP is the unit normal vector

-
(np'V)o = V(p) on Sy (4.3) pointing out of domain II and

and to a condition of standing or out- F(p,Q) = c(P,Q%) + G(P,Q7), (4.8)
going waves as vlyl*m. For all cases of

. interest 0<£< v, -

§ == with 0= Q lying on SyUS.US, and Q

£ . Assuming a symmetric flow with re- being the symmetric of Q with respect
4 spect to the y=0 axis, we may write to the y=0 axis; G(P,Q) is the velocity
i the velocity potential in region I in potential at P due to a fundamental

y ‘ the form (Ursell (1949, 1968)] w1it source located at Q, given by

? QI = a W (r.‘,f)) + Z a W (!‘,0), (‘o‘) [1 loq(r ) =0

g o o mepmom Im 09N Tpql) v

L G(PQ) = . (4,9)
SN where ap is the effective source l_x 250

K strength, W, is the relevant wave 2m O(LIPQ) ! J

2 source potential due to a unit source

Py located at the origin,and Wg(r,8) are . .

4 wave-free multipoles, For I= v|cosB|>0, where_Kg(x) is the modified Bessel

W =Re (D, ) with D, defined in Section functioh of zeroth order.

2, and
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A grid is selected along the contours

Sps Sp and S, with the velocity potential

¢ assgmed coﬁstant along the segments
joining two consecutive grid points.
Let Np, N and Nj be the number of seg-
ments aloﬂg Sns Sp and S, respectively.
Taking the seSment lengtﬁs to be of
equal length along the matching circle
and keeping N_~-1 terms in the sfries
(4.4), the veXocit potential ¢+ and
its r-derivative ¢i_ at the segment
midpoints can be written in a matrix
form

-

ol = aa (4.10)

I

.
¢, =B 3,

b2 g

(4.11)

+ -
where the column vectors ¢I. a and the
matrixes A and B are defined as follows

.
of = (TR et R0y 1T (422)

3= lagre, ay )T (4.13)
R
and
- (1)
A=A =W ) (R6;), By Irsn
1, = 1yeea,N (4.14)

RI
where (R,6.), i=1,...,N, are the polar
coordinated of the segmgnt midpoints

along the discretized circle S,, with
0y decreasing to zero as i incfeases,

If we left~multiply both sides of
equation (4.10) by BA~l, we obtain a
rclation between the velocity potential
21 and the normal velocity ¢£ , in the

orm

>

I .palyl, (4.15)

-
O

We next proceed to the discretization
of equation (4.7). f%ue velocity poten-
tial at the midpointrgf the i-th seg-~
ment is denoted by ¢;°, where the in-
dexing starts from the point A of Fig,
1, It follows that

N N
T 1 11 T 11
j=1 J=Ng+L
N
B
=7 Si5 V4 . (4.16)

i=1

where N,, = N +N_+N_, V. is the body
boundarg norRavaefocily, 8 5 the

Kronecker delta and 1

Cij

oL . N
_ [Pig 3heeeNpandjRgHl,. 'k’;] (4.17)
Bij‘vsij j=NB+1' ooy NF A

with i=1,..,N The influence matrixes

s D.. 1,3 g.1,...,N are defined as
f&iiowﬁj ) T
Sij = ! ds(P)F(P,Qi) (4.18)
%3
-
By = i as(e) (T IF(RQ),  (4.29)
j .

where,F(P,Q) is defined in (4.8)~(4.9),

the point (; is located at the midpoint

of the i-th segment and the inteqrations
in (4.18)-~(4,19) are performed over the

j=ta segment sj.

The matching conditions of continuous
pressure and normal velocity across the
matching circle sR can be expres«ed in
the form

oT(R,6;) = oL, (4.20)

11

1 .
¢x(R'ei) = ¢t JitN ! (4.21

where i=l,...,Np and N=NB+NF. Using
(4.20)~(4.21) and (4.15)"in the second
sum of (4.16), we end up with a matrix
equation for ¢§I, s L3 PRI

hd -
(C--fr 1-E}¢TY = s v, (4.22)
where,
o' = o107 i=1,... N, (4.23)
V= {vy, 000,07 1,000 Ng (4.24)
(.
Np+Np
I..=§,.
300 1,3%1,...,Np  (4.25)
s =5,
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j=1'...'N
(4.26)

j=N+1,...,N?J

with i=1,...,NT and A=Aij, B=Bi"

i,j=1,...,N,r defined in (4.14).

The velocity potential ¢ along the

contours SB' Sp and sR is determined

from the solution of the system of
equations (4.22), The effective source
strength a_ in (4.4) is obtained by
left-multiBlying (4.10) by A-1,

The present scheme is free from
irregular frequencies. Furthermore,
only one evaluation of the wave-source
potential Wo is necessary, This reduces
substantially the total computation time
required, in comparison to the alterna-
tive approach of a wave-source distri-
bution on the body boundary, especially
when £>0,

The described technique has been
applied for £=v{cosB|>0 in the context
of the diffraction problem. Selecting,
the matching circle radius R 10% greater
than the body-section maximum radius and
15, 10 and 15 segments on SB’ SF and SR

respectively, proved to be sufficient

for 0 < B < n, where B is the beam of
the body section, The same estimates
are expected to hold in the special
case of (=0, For this paper, the two-
dimensional solutions of the radiation
problem are ootained by using a com-
puter program due to Yeung (1975),
based on his hybrid integral equation
technique.

5, Hydrodynamic Forces and Motions

The quantities of interest for the
evaluation of the ship motions are the
hydrodynamic pressure force and moment
acting on the ship in the radiation and
the diffraction problems, For a ship
undergoing a steady-state small ampli-
tude oscillatory heave and pitch motion
in an otherwise calm free surface, the
resulting complex force amplitude can be
written in the form

H, =} n. ot

j=3,5 3 1J =305 .1

where n. is the complex amplitude of
the shig's displacement and

_ .2
t:. = w a3

44 - iw hi. - C.. (5.2)

] 1]

The coefficients a,., b.., c.,. are real
and correspcnd resﬁéctiblly td the force
components in phase with the accelera-
tion, velocity and static displacement
of the ship. The added-mass (aij) and

damping (b..) coefficients can bhe
derived frdm the inner velocity potential
(2.21) of the radiation problem by inte-
grating the linearized pressure obtained
from Bernoulli's equation over the ship
wetted surface. It follows that

2 . o s
w aij - lwbij = ~jiwp IIni¢jds

—iwo[[nicj(X)(¢j+$j)ds, (5.3)

where all the quantities are defined in
Section 2B.

The first integral in (5.3) corre-
sponds to the strip~theory contribution.
The second intearal is the correction
due to the three-dimensional interaction
effects introduced by the unified theory.
As v+, it follows from (2.25) and (3.4)
that C.(x)»0 and the strip-theory is
recovered,

Proceeding to the diffraction prob-
lem, the resulting complex amplitude
of the wave exciting force is simply

i i=3,5, (5.4)

F. =Axi,
where A is the amplitude of the incident
wave, Using the incident~wave potential
(2,1) with A=1 and the diffraction
potential , the unit-amplitude ex-
citing force X. can be expressed in the
form .

X; = -iwo!J(?I + 97) nids. (5.5)

An alternative expression can be
obtained by using the Haskind relations.
Combining the body~boundary condition
(2.4) for the radiation problem and
applying Green's theorer in (5.5), we
obtain

19
- - i - I
X; = p”(lmni?l ?i—rn)ds. (5.6)
where? is the radiation potential due

to the t-th mode of oscillation. With
the velocity potentials ?, and?i assumed

known, no assumptions are involved
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regarding the wavelength or the body
geometry in (5.5) and (5.6). The
advantage however in using (5.6} is

that the solution of the diffraction
problem is not needed for the evaluation
of the exciting force and moment of a
body in waves.

For a slender ship, the inner
diffraction velocity potential defined
in (2.5) and (2,36) isused together
with (2.1) to give

s -ivxcosB
X; = -1mpjje c7(x) w7Hnids (5.7)

where C, and ¥, are defined in Section
2B. ThZ correggonding expression for
{(5.6) is obtained by substituting the
unified-theory radiation potential
{2.21) in (5.6). If follows that

_ . 3¢y q
X; = =pj|(iunsgpy = ¢; - )ds

+ C. (x) (6:+%.) 1 as (5.8)
P i i7%i I 9% .

As v+», the interaction coefficient
C, (x)+0 and expression (5.8) reduces
td the exciting force cbtained in the
strip theory of Salvesen, Tuck and
Faltinsen (1970), The short-wavelength
limit of (5.7), however, does not lead
to the same result since the slender-
body approximations involved in (5.7)
ané (5,8) are different,

The relative error involved in the
inner diffraction problem is a factor
1+0(e?vecosB). The corresponding error
factor for the radiation problem is
1+0(c?) for all wavelengths, It is thus
expected that, unlike the radiation
velocity potential and the exciting
force (5.8), the accuracy of the diffrac-
tion potential Y7y and the corresponding
exciting force (g.7) decreases with
decreasing wavelength, This is support-
ed by the comparison of the exciting
force and moment predicted by (5.7) and
(5.8) with an exact three-dimensional
theory.

The equations of motion follow by
equating the inertia forces to the sum
of the pressure forces and the ship
weight, Combining (5.1) and (5.4) and
taking the origin of the ccordinates
on the ship centerline and above the
center of gravity, the equations of the
heave and pitch motions follow in the
form

to +AX s-0’ ) Mo.n. . (5.9)
fe3,5 3 43 BT gea,s 1

N .
TR 3 s

- i R OB e+

where M3?=PV is the ship mass, MSS is

the ship moment of inertia with respect
to the y-axis and M35=MS3=0 due to the

special choice of the coordinate system.
Substituting (5.2) in (5.9) and rear-
ranging terms we get

-2 i .
jZB,Snj{ w (Mij+aij)+1wbij+cijl
i=3,5.

= Axi, (5.10)

This is a system of linear equations
that can be easily solved for the
complex amplitudes nj, j=3,5.

Numerical computations of the hydro-~
dynamic forces and motions were per-
formed for a Series 60 hull (C_=0.7,
parent form). The Salvesen, et al.
(1970) strip~-theory results are also
shown together with an exact three-
dimensional nuirerical solution by Inglis
(1980) and experimental data, where
available,

The results for the radiation prob-
lem are shown in Figures 2 and 3, and
are compared to experimental data of
Gerritsma (1966). The agreement be~
tween the unified theory and experi-
ments is very good both for the hydro-
dynamic force distribution (Figure 2)
and the added-mass and damping
coefficients (Figure 3 adapted from
Newman and Sclavounos (1980)), and
indicates a notable improvement over
st-ip theory. The deviation of aq
from the experiments that occurs ag low
frequencies is supported by the excel-
lent agreement between the unified
theory and the exact three-dimensional
solution of Inglis (1980) for all
frequencies.

The slowly varying sectional hydro-
dynamic force distribution for the
diffraction problem is given by

Fs(x)= —iprC7(x)I w7Hn3dl. (5.11)

C

The corresponding expression for the
Salvesen et al. (1970) strip theory is
obtained from (5.8) with Ci(x)=0, in
the form

! _ _ipgA : _, 9
Fy(x) = -7§— I (1wNg=6 ) .

C

e’Zcos (vysing)dl,

(5.12)
where all the quantities in (5.11) and
(5.12) are defined in Section 2B. The
results for F) and the amplitudes of
the exciting fgrce and moment shown in
Figures 4 and 5 respectively, indicate
that the strip-theory predictions are
in general higher than those of the




unified theory.

The two expressions of the exciting
force and moment (5.7) and (5.8), de-
rived respectively by pressure integra-
tion and using the Haskind relations,
compare well with each other, being in
closer agreement for smaller values of
vicosg|. For head waves, both agree
well with the experimental data of Vugts
(1971) and the three-dimensional solu-
tion, with a relatively more favorable
agreement of (5.8) with the theory of
Inglis (1980).

Finally, the motions of the ship free
to heave and pitch are presented in
Figure 6, where comparisons are made
with three different sets of experi-
mental data due to Nakamura (19r6),
Shintani (1966) and Yamanouchi and Ando
(1966) . For the model tested, the
center of gravity is taken at the origin
of the coordinates and the longitudinal
radius of gyration is taken equal to
1/4 of the ship's length L.

All theories agree well in general
with the experiments, except for short
waves at $=180°. The conclusions drawn
for the exciting forces and moments
predicted by (5.7) and (5.8) remain
unchanged for the respective ship motion
amplitude predictions, since the added-
mass and damping coefficients are the
same in the two versions.

Before comparing the motion ampli-
tudes predicted by strip theory and the
rest of the theories, it is interesting
to make the following observations; for
the radiation problem, strip theory
underpredicts a,, and a 57 and over-
predicts b,, and™b fog moderate to
low frequegéies, bg§ng in good agree-
ment for high frequencies. Both these
effects contribute to an overprediction
of the modulus of the transfer function
of the left-handside of equation (5.10).
The effects of the cross-coupling coef-
ficients are taken into account in the
computations but are relatively unimpor-
tant and are neglected in the present
discussion.

For the diffraction problem, strip
theory again overpredicts the exciting
force and moment amplitude and since
the motion amplitudes are the ratios of
the quantities discussed, strip theory
is in general in good agreement with
the rest of the theories. The theoret-
ical predictions of the phases agree
well in general, with the exception of
the heave phase at 8=135° and a depar-
ture of the three-dimensional theory
f.r the pitch phase at B8=18C°.

In conciusion, the unified theory is
in excelsant agreement with the exact
three~dimensional theory, and both
agree very well with the experimental

PR T i aa

data. The strip theory predicts well
the motion amplitudes and phases but is
in less satisfactory agreement with the
other theories and experiments for the
hydrodynamic coefficients and the
exciting forces.

The integral equations (2.27) and
(2.34) are solved by iteration and the
solution obtained in this manner has
been checked against an independent
matrix inversion solution. The computa-
tion time required for this task is
minimal, leaving the solution of the
two~dimensional problems as the main
computational effort involved in the
unified theory.
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